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By Clinton E. Brown and Mac C. Adsms

A method is derived for calculating the -ping coefficients in —
pitch and roll for a series of triangular wings and a restricted series _
of sweptback wings at supersonic speeds. The elementary “supersonic
sourc9“ solution of the linearized equation of motion is used to find
the potential function of a line of doublets, and the flows me obtained
by surface distributions of these doublet lines. The damping derivatives
for triangular wings are found to be a function of the ratio of the
tangent of the apex angle to the tangent of the Mach angle. As this

.+ ratio becomes equal to and greater than 1.0 for triangular wings, the
damping derivatives, in pitch and in roll, becmne constant. The damping
derivative in roll becames equal to one+half the value calculated for

w, an infinite rectemgular wing, and the damping derivative in pitch for
pitching about the apex becomes equal to 3.375 ttmes that of sn
infinite rectamgukrwhg.

. 8

INTRODUCTION

In reference 1, a strai@tforward methcd was found for cs3culating
the lift and the drag due to lift of triangular wings. The present
paper extends the methcd to the calculation of rolling and pitching
motions of the wings. The damping coefficients in roll and pitch for
the limiting case of very slender wings have been calculated (reference 2).

-.

7he present theory is not MmIted by the size of the apex single,and
triangular wings with leading edges ahead of and behind the lkch cone _
originating at the apex of the wing sre treated.

In the present theory, based on the linearized equations of motion,
the wing is represented by a doublet distribution which can be shuwn to
be equivalent to a vortex distribution. An integral equation is found
which mm be easily solved by smslogy with known relations for two-

“
dimensional Incompressible flow. The pressure distributions presanted
may be used to calculate the damping coefficients of a limited sgrles of
wings for which the trailing edges are cut off so that they lie &ead of

. the &ch cone springing from their foremost point. .-
.
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Xs Y> z coordinates of field point (see fig. 1)
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disturbance-potentie,lfunction

potential of supersonic source

potential of supersonic somce distribution

potential of supersonic doublet distribution

potential of a line of doublets

source or doublet strength

tangent of half-apex angle

f’ ift force
lift coefficient . )

pitching+noment

($v% J

[ )Pitching moment
coefficient .—

rolli~ (w
Roll.i

nt coefficient
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moment

~T2Sb
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half of apex angle of wing

doublet-line-distributionfunction

root chord

(f b/2
mean aerodynamic chord 57= ~

so
)

(Iacal chord)2 dy = $

point about which the wing pitches
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,
. M’ Mach nnmber

P density of fluid

v free+treem velocity

‘x incremental velocity component in x+lirection

P lifting-pressure coefficient

( )

Lifting pressure

$V2

&ch sm.gle tin+ *)

c – j32ycJ‘-G - pq++Z2)

s wing axea

~ q= velocity of pitch

P ~ velocity of roll

b msximum Spsn of wing

K Constsnt

w z-ccmrponentof velocity

—

.
v small quantity

Et(13C)
(J ~

fl/2
complete ell.ipti.cintegral

)

1- (1 - p2C2) sin2n dn
o
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Ft(PC)

Subscripts:

q

P

1
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complete elliptic integral
p

)

“2 ~
o J..– (1 - 132C2)sin%

,.
.

.

—

pitching condition

rollLingcondition

incompressible

ANAIxsr.s

Solutions must be found that satisfy the linearized differential
equation of a nonviscous compressible fluid written

,23-3-9=0

may be written

q. =

The quantity A

4(X - XJ. - P*; - 7J* - P*(Z - .1)2
(2)

is the strength ooefficient of the source. New
solutions may be obtained by superposition of such potentl~s as *@m
in reference 3. For example, a distribution of suurces over a portion
of the xy+plane would give the potential

(3)

where the limits chosen must be such that all sources wi~ be located
within the forward Mach cone frcm the field point (x,Y,z). Another
solution may now be obtained by differentiationwith respect to my of
the coordinate directions, that is,

(1)

where x, y, z are Cartesian coordinates (see flg. 1), and @ is the
disturbance-pmtentlal function created by the wing. An elementary
solution of this equation lmown as the potential of a supersonic source

.

.

.

.
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.

-A(xl,yl) dxl ~1

x - X1)* - p*(y - yl)a - p*z*

(4)

This solution, however, may be considered the vertical or z+cmponent
velocity of the source-distribution potential @S, and as shown in
reference 3

@D = a(x,y)
(5) “

s-o

The step taken in equation (4) also corresponds to the formation of a
doublet potential, that is, ~ represents a distribution of doublets
over the xy~lane with strengths proportional.to A(xl,yl). For emy
known doublet distribution, the velocity component parallel to the surface
in my direction s may Wnediately be obtained from equation (5)

(6)

me foregoing results are and.ogous to incompressible+flow relations and
it may be stated in general that for every doublet distribution there is
a vortex distribution which till produce a similar flow. The vortex
distribution amd doublet distribution are directly related by equations (5)
and (6). These simple concepts, given first by Frendtl (reference 4), may
be used direotly to obtain the solution of problems in whioh the pressure
distributions are given, such as airfoils of unifozzuloading. H the
equation of the surface is given and the pressure distribution is required,
integral equations must be solved. In certain cases, the problem may be
simplified if the form of the final potential is known. & reference 2
the disturbance potential for wings of very low aspect ratio was found to
be in the form —

. ()ga &f $,; (7) ‘
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!Ihisform of the potentiell.appears quite logical from the standpoint of
satisfying the boundary conditions for steady rolling or pitching. . k
the foil.uwinganalysis, the assumption of a potential In the form of
equation (7) Is shown to be correct; huwewer, it should be pointed out
that the potential of this type must be restricted to the linemized
theory and is not of the same general natwe as that o??a conical field
which exists even in the nonlinear problems.

From equation (7) the doublet distribution over the smface will
be in the form

(8)

.

and under the assumptions of the line=lzed theory the lifting-pressure
coefficient is now:

(9)

.
The formation of the integral equation follows the method of

reference 1. A potential that represents a line of doublets in the
V-Plaf3 at an angle tsm-lu to the x-is is derived in the form of
equation (7). Use is made of the boundary conditions to set up am

integrel eqpation that introduces the unknown distribution function f(a).
The potential of the doublet line may be obtained by following a procedure
similar to that used in obtaining equations (3) and (4), and by substituting
the expression for A given in equation (8) into eqmtion (4). The
expression obtained in the following eqution may be seen to reprasent a
line of doublets sllongwhich the doublet strength increases as x3:

=-

+-

!+’z(x- l%) ( c
(1 - i3%2)5/2 3cOth-l~-~~ )
3322 4X2 - BP(Y2 + 22)

{1 – p22)2
(lo) .

—

.
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where

-— “7
—

—

and X’ is the wilue of
mnishes. The potential
integration with respect

9’

xl for which the denominator of the integmnd
of the conqlete wing may now be obtained by m
to the dhnensionless pammeter u .__.

~he~e tan-lc . ~, the half-apex angle, and f(u) is an unlmuwn distri–
bution function. !L?hez-oomponent velocity w mm be written for f3~

approaching zero

JPC pf(a) ~’2-
+2X

-PC (1 – fA#)2

~ for convenience.where 19= x The boundary conditions for rolling may

now be written

w= -w

or

w–=-pe
x

(13)

For ~itching about the y-is, there is obtained

w= -qX



8

or

w-=
x -q
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lldnmductiun of equations (13) and (14) into equation (12) provides

(14)

integral
Wcti on
equation

quantity

appendix

equatiom- which theoretically can tie~olved for th~ unknown
f(a). Simpler-relations,however, may be obtained-if
(12) is differ~tiated twice with respect to 8 to obtain the

&@. ~
’92

e method for differentiating is indicated in the

and gives

.

.

+ 6/=77 ~;+,,

The boundary conditions re~uire the foregoing quantity to be zero for
both rolli~ and pitching ~ith the additional.requirements on f(a) that,

.

for rolling, at the point 0 = O

(w/x)p = o (16)

and, for pitching,

Equation (15) now yields, for rolling,

(17)

1

.
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for pitching,

-.
9 --

{

J
(efi) f(cf)qda c

J

f(u) da

[ 1]ff’(c)q f(e)q ‘
q-50 6 ~ D

+6 –k —+— = o (19)
(e+~) (a - e )4 n 73

J

Equations (I8 ) and (19) are identical to the equations that would be
obtained for similar boundary conditions on a two-dimensional flak plate
if em anslogous process of distributing the doublets were fol.lowed. (See
appendix.) The amalogue for the rolling motion of a triamgulm wing
would he a two-dimensional flat plate rotating about its midchord point
in a stationary stream. The surface potential distribution and therefore
the doublet distribution would be

f(u)p = K& Jcn (20)

For the pitching condition the
flat plate in a stream flowing
doublet distribution would be

emelogue would be a two-dimensional
normal to the surface. The potential or —

f(u)q=Kq jC2-#

!lhesepotentials, which can be found in references 2 and S,satisfy
equations (18) and (19) by analogy; however, the conditions of equations (16)-
smd (1 ) must be shown to be satisfied. For the calculations of (w/x)p

aTw/x)q
ad ~, and the evaluation of ~ ad Kq, only onevslueof e

need be considered. T!hisvalue may conveniently be set equal to zero. Fcr
rolJing motion, equation (20) indicates the doublet distributicm to be
antisy?nmetric. Therefore the velue of w/x at e = O must be zero, and
the condition of equation (16) is satisfied. For the pitching motion,
the doublet distribution Is symmetrical about e . 0 end therefore the

-must be zero at Clquantity = O and the condition of equation (17)
de

is satisfied.

The constants
%

and K may now be evaluated frcmthe relations

obtained in the appendix for LO -.
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f [

$(-q) J-2’PCdp~$ d(pa) + Kq ~c
+ !ZTCq

-@C (1 - 132a2)2 P%(1 - 1322)2

r

J

d(13cr)

(22)

pc

-%J-DC

.

—

p2$

.

tedl-l @ - ~22 d(pa)
.

(23)

.—

.

.

-. ______.-—
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~uations (22) and (23) may he integrated by use of tables (reference 6)
to give

‘=%?

Ft(~C) and Et(PC)
second kind.

[

p2c2_&’c2 ~t(pc) –

1

.—
2

F*(~C)
1 - 132C2 1- 92C2

[

1
22

-2P c ~t(pc) + P2C2 1Ft(13C)
1 - J32C2 1’- P2C2

ere complete elliptic integrals of the first and

The pressure distribution for the rolling wing
fra equations (g), (20), and (24) and the pressure

kxpc%—

(24)

(25)

may now be obtained
coefficient is

— \--/

Integration of
moments actfng
be found

the pressures over the wing surface gives the forces and
on the wing. The nondimensional derivative Cz

P
may then

c. = ..-
“

[
42–

p2c2

~2c2 Et(PC) _ P2C2_ ~2c2 1
Ft(~C)

l– 1
L. J

(27)

In the analysis the pitching axis has been taken at the wing apex;
however, in application it is desirable to obtain the pressure distribu–
tion and the force and moment coefficients for pitching shout any point.
A superposition of motions is therefore reqtiired. The pitching motion.
about any point X. C= be made up of a pure pitching motion about-the
apex of the wing ccmibinedwith a vertical translational motion of
velocity qxo..
corresponds to

The pressure distribution for this translational motion

that of a wing at a constant angle of attack of

*
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-~. (See references 1 and 7.) The pressure distribution for the
v

q% ~~constant angle of attack - —v

P=

Ccmhining equations (g), (21), (25), and (28) gives for the pressure
distribution in the pitohing case

(28)

4qx

1

2C2 - (32 X()$
P=

J

(29)
V/#= 1-2p2&Et(~@ + p2(32

Ft(~C}
XiN(pc)

1 - 132C2 1 - 132C2

Integration of
nondimensional

the pressures over the wing surface
derivative yields

1- 2P2C2E*(~C) +
p2(j2

W(13C)
1 - 132C2 1 - p2c2

and fozmation of the

4YCCX0
-— (30)
El(~C)5

()47CCX01- ~

and

%
= +

1- 2~2c2Et(fjc) +
#c2

F1(13C)
Cmt($c)

1- P2C2 l– ~2c2

where T is the mean aerodynamic chord.

(w)

Calculations of these derivatives for triangular wings having their
leading edges outside the Mach cone sxe most easily made by the source
distri.butionmethod. h this method, the upper and lower sides of the

.

.

.



NA~A TN NO. 1566 13

wing may be considered independent of each other. The somce distribution
function for the rolling wing is

(J8pX1,Y a ml (32)

whereas that for the pitching wing is

(33) ._

The calculation of the pressure distribution is not presented, since the ____
subJect of the integration of source distributions has been well covered
in reference 3.

The pressure distribution for rolling wings outside the Mach cone has
been calculated to be

4#x
P=

[

(1 + #Cc) Cos
.1 I + @%e

1

t3%e
- (1 - !32ce)C06-1 1-

fiv(p%p - 1)3’2 P(c + e) p(c - e)

Integrating the pressures
nond3.mensionalform gives

(34)

over the wing and expressing the derivative in

—.—

cl = -$ “(35)P

For the pressure distribution due to yitching about the point ~, a

combtiation of flow patterns must again be used. The pressure distributim
~~

of a wing at uniform angle of attack -~ is (reference 3)

4g.~c

[ I

Cos-l1 - P2ce● ~os-l1A,

p= .-l
g!(c- e) p(c+ e)

The pressure distribution for pitching then becomes

(36)
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The

[

4qx 2PCILE7 , p3c3 - 2J3C- pe
P =—

7tv13 ~2c2 _ ~ (& - 1)3/2

1p~s–ppc+~~~o~_l~_~2c@
+

(P2C2 -1)3/2 p(c-e)

NACATN No. 1566 .
—

e)

nondimensional derivatives cLq W Cmq ‘hen bee-

9– L

%q=- ~8:’:(’-%)

(37)

-.

(38) .-

.

(39) -

DISCUSSION AND CONCLUSIONS

Expressions for the lifting-pressure coefficients ov~r triangular
wings in roll are given in equations (26) an&(3k) and in pitch in
equations (29) and (37)* Equations (26) and (29) are for wings
inside the Mach cone and equations (34) and (37) for wings outside
the Mach cone. Typical pressure distributions are shown in figure 2
in which the pressure distributions for the two tings in pitch are
for pitching about the apex.

.:
-

F&pressions for the quantities C2P, CLqj and ~ are given in .
eqyations (27), (30), smd (31), respectively, for the case of the wing
inside the Mach cone and in equations (35), (38), and (39) for W@S lYfng
outside the Wch cone. It will be seen that the parameters 13C7p, ~CLqS .

and 13~ may be expressed as functions of 13C where
q

.
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. tellGpc=—tanj.1

The stability derivatives may therefore be plotted against
to give curves which will hold for all triangular wings at
These curves are given in figures 3, k, and !5. For values

this psrsmeter,
any Mach number.
of pc!

approaching zero ~e values of the derivatives closely approach those
given in reference 2 which were based on the assumption of very low
aspect ratio.

For values of j3C2 1 (that is, for the wing lying outside the Mach
cone), the quantities $Czpand p% become constsmt, end equal to

-~and –1, respectively, (the pltchi& being about the ~C win%). b

comparison, the value of pc~ ~ P% for infinit~pan, rectangde27

wings are —&d-~, respectively, (the pitching being about the
-.

3 3
leading edges).

It should be pointed out that the pressqre distributions given’in
this paper may be used directly to celculate the damping in pitch and
roll for wings having trailing edges cut off ahead of the Mach cone, the

. most interesting of this series being the so-ca12ed ltarrowwings.lf

It is apparent that a suction force exists at the leading edges of
. wings in pitch and roll whenever the leading edges are swept behind the

Mach cone. A method for obtaining the vslues of these suction fwces
was derived in reference 1.

Lemgley Memorial Aeronautical Laboratory
National Advisory Ccmmittee for Aeronautics

Langley Field, Vs., December 12, 1947
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lmmmmmmo~ OF EQuATIoll (12)?4EllEODlWl D

Ihe expremicn for w (equation (12)) cannot be used directly when z is set equel to zero

cbecause of a troublesome singularity in the term — smi the occurrence of an indeterminate fom
ty-1

umier the integrsl sign. To obtain the value of w cmthe surface, however, it is possible to

integrste and then set z equalto zero. 5e troublesome parts of eqmtlon (I-2) cane frcmthe terms

cinvolvlng —. These terms, written out, w be integrated as follows:

{2-1

“/J=> ‘c@!&&.&
(1-$’&)2

+3C

a(~a)

—

~ ~2z2

---(,+%)2
1

~- (1+202) ~WM3F + (1+%%$]:(P@e)2+ (l+&’2

1
PC c

[ )21~pi’ (0) (l+%e)2

W(a) (1-02@)2/17e2( P@e )

+-
d(Pu)(!WW) (1-$’2.—

)[ 1 ~
(1-W 2 (Wi3e)2 + (l+2a2)~ ~c (M-W)2 + (1+2*

d(~u)

I
I +3’

r t

(Al)

,

.
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Introducing the Mmita and then 8etting z = O gives ~
+

i3f(c)(l - ,6%)2/-

(A2)

The integml term of the expression (M!) is improper, hauever, andmmt be evaluated at the sin@iar
point 13 = LT. H the expression (A2 ) Is now integrated by partE, account being taken of the dngular ‘
point, there is obtained with z = O

J

I

I

I

pf(u)(l - 132a0)2

(1 - B2F)2(W - p@)2” 1

d(~a)

(A3) ‘

P:
‘+

,



Equation (I2 ) may now be rmrritten for w/x with z = O:

f P(h) pf(.)J.. - p%-yl - Pw lbl—=
x J{[‘+0 +3C 2$)2‘(’”’-w’(~”’(1 - i3%2)2(j3.- 13e)

+
2$fLJ))A~

(1 - i322)2

Following Iaibnitz t rule for differentiation
f lneJJy:

tier the integral sign ad collecting terms gives

. i t

1,1
. .

P
al



I .

,

.

[

U
c 3p3~(a) .Ot!h-lg

a(pa)-
#(3po + 2pe + lW3W)f(u) ~(pa)

+ p(e+q) (1 - IAW
F&% - fJ2#f

_ 2pef(e) _ 4Gl&%’’(e)

1

(A5)
ll#=F$+ v

I

1!
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The second differentiation now givei3

r

%_k)=
ar+

!t!he same

a Bingle

process may be carried throu@ fur am Incompressible, two-dimensional flow. The potential of

doublet at a point (Y1, O) in a ~nsional field (y, z ) would be (raferenoe 8)

from which w. . the velocity norml
1-

muld be

titegmting by parts,

.,

#=

to a

J
c

Wi . f(Yl) ml
-c

thensettimg 2=0

/-

z (A7)

(T1 - Y)* + Z*

~t plate ertendingalcmg the y-axis from -C to C,

[

1 2Z2

1(Y1-Y)2+zGl-y)*+z2

as in equations (Al) to (A4) gives for z = O
.

# .

(A6)

I-3
z

g

(A9) -
~
m
Cn

. ,

1
L
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Differentiating twice with respect to T gives

, *

(Ale)

!l%ia equatioq except for the factor Jl?, is-qouto e~tfm(ti). Wentieb_

aqw/x)
conditions reqd.re the term — to be zero, the factor~be emitted and aolutims of equation (AIO)

are then seen to be mlutiona o~~g,uatlon (A6 ).

*
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Figure 1.-
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